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TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids

Quantitative modeling of bacterial quorum sensing dynamics in
time and space∗

Xiang Li(李翔)1,2, Hong Qi(祁宏)3, Xiao-Cui Zhang(张晓翠)1, Fei Xu(徐飞)1, Zhi-Yong Yin(尹智勇)1,
Shi-Yang Huang(黄世阳)4, Zhao-Shou Wang(王兆守)4,†, and Jian-Wei Shuai(帅建伟)1,2,5,‡

1Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
2State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China

3Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
4Institute of Biochemical Engineering, Department of Chemical and Biochemical Engineering,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

5National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China

(Received 20 June 2020; revised manuscript received 14 August 2020; accepted manuscript online 25 August 2020)

Quorum sensing (QS) refers to the cell communication through signaling molecules that regulate many important
biological functions of bacteria by monitoring their population density. Although a wide spectrum of studies on the QS
system mechanisms have been carried out in experiments, mathematical modeling to explore the QS system has become a
powerful approach as well. In this paper, we review the research progress of network modeling in bacterial QS to capture the
system’s underlying mechanisms. There are four types of QS system models for bacteria: the Gram-negative QS system
model, the Gram-positive QS system model, the model for both Gram-negative and Gram-positive QS system, and the
synthetic QS system model. These QS system models are mostly described by the ordinary differential equations (ODE)
or partial differential equations (PDE) to study the changes of signaling molecule dynamics in time and space and the cell
population density variations. Besides the deterministic simulations, the stochastic modeling approaches have also been
introduced to discuss the noise effects on kinetics in QS systems. Taken together, these current modeling efforts advance
our understanding of the QS system by providing systematic and quantitative dynamics description, which can hardly be
obtained in experiments.
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1. Introduction

Bacteria can sense the concentration change of chemical
signaling molecules with small molecular weight that secreted
by other bacteria, thereby promoting communication between
bacteria and synchronizing the behaviors of bacteria group.
This phenomenon is called quorum-sensing (QS).[1,2] The sig-
naling molecules that secreted by bacteria can regulate their
own biological behaviors, called autoinducers. The concen-
tration of QS autoinducer increases with the increase of the
population of bacteria. Once a threshold concentration of au-
toinducer is reached, autoinducers will activate or inhibit the
transcription and expression of several target genes, thereby
regulating the biological population of bacteria,[3] such as bio-
luminescence, biofilm formation, differentiation, extracellular
polysaccharides production, motility, antibiotics production,
and so on.[4]

The QS system uses fatty acid derivatives as signaling
molecules in Gram-negative bacteria. The signaling molecules

mostly belong to the class of N-acyl-homoserine lactones
(AHLs).[5] AHL is essential for the QS in Vibrio fischeri,
which has a gene regulatory network containing two main
components, LuxI and LuxR proteins. LuxI is the inducer
protein that synthesizes the autoinducer AHL.[6,7] LuxR is the
transcriptional regulator protein that binds AHL to form dimer,
and then binds to the promoter of the protein operon on the
DNA to trigger the relative genes. AHL can freely diffuse in-
side and outside the bacterial cells.[8] AHL concentration ac-
cumulates with the increase of cell population density. When
the concentration of AHL reaches a threshold value, it binds to
the LuxR protein and activates the transcription of luciferase
gene, leading to luminescence of the cell.[9]

The QS system in Gram-positive bacteria mainly uses
small peptides (autoinducing peptides, AIP) as signaling
molecules to regulate gene expression.[10] At high cell pop-
ulation density, the synthesized AIP is accumulated to a cer-
tain level and can be sensed by the corresponding recogni-
tion system. The main module of this recognition system is
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the receptor molecules of the histidine kinase two-component
system.[11–13] The binding of AIP to the receptors can induce
the kinase activity of the two-component system and trigger a
series of phosphorylation events. AIP phosphorylates the re-
ceptor and processes signals to the cytoplasmic regulator. The
activated regulator further induces the transcription and ex-
pression of the related genes to produce more AIP molecules,
thereby generating the behavior of QS.[14]

Another set of QS system was found in Gram-negative
bacteria in the 1990s, in which autoinducer-2 (AI-2) is
the signaling molecule produced by the catalyst of LuxS
protein.[15,16] AI-2 was then detected in a number of Gram-
positive and Gram-negative bacteria.[11] Regulators that are
phosphorylated by AI-2 can induce the transcription and ex-

pression of related genes. Therefore, AI-2 can participate in

the QS of both Gram-positive and Gram-negative bacteria and

is believed to be a general signaling molecule for facilitating

interspecies communication.[6]

QS was first observed in the marine bacterial species,

which are important experimental models for exploring the un-

derlying mechanism of the system. However, it is not conve-

nient to directly study the QS mechanism in marine bacteria.

Therefore, various synthetic QS systems have been designed

and constructed for more conveniently and deeply study and

programming new dynamics. Escherichia coli (E. coli.) engi-

neered with QS systems is a typical synthetic model, which is

simple and easy to perform analysis.[17,18]

(a) (b)

(c) (d) (e)

Fig. 1. An overview of the QS systems in bacterial cell. (a) At low cell density, the concentration of autoinducer is low. (b) At high cell
density, the autoinducer concentration reaches a threshold to induce corresponding gene expression to trigger QS. (c) Schematic of the QS
system in Gram-negative bacteria. AHL is the autoinducer in the system. (d) Schematic of the QS system in Gram-positive bacteria. AIP is
the autoinducer. (e) Schematic of the synthetic QS system in E. coli. The synthetic strategies mainly include regulator modification, promoter
modification, and circuitry addition.

Mathematical modeling is a powerful approach for

dissecting the dynamic mechanisms of complex signaling

networks.[19–23] For example, the link between synony-

mous mutation and oncogenesis has been studied with net-

work modeling.[24] Large numbers of signaling network

models have been proposed to explore the mechanisms of

carcinogensis.[25] The Myddosome assembly strategy was re-

cently determined by using a mass spectrometer data-based

modeling.[26] For the QS systems in bacteria, an increasing

number of mathematical models have been developed to study

the underlying control mechanisms.[27] The QS system of agr

governs the virulence determinants of Staphylococcus aureus.

However, how the agr system is activated remains unsolved

in experiment. Through modeling analysis, sarA expression is

proved to be the inducer for the transcription of agr operon

that triggers the QS system.[28] Experimental analysis indi-

cates that the QS system networks in Vibrio haveyi and Vib-

rio cholerae are topologically equivalent and have homolo-

gous components. Nevertheless, for the same experimental

conditions, the two QS systems show completely different re-
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sponses. Experimentalists can hardly identify the underlying
mechanisms of these differences. Hunter and Keener showed
that, rather than the dosage compensation mechanism that hy-
pothesized by experimenters, the affinity of qrr and its expres-
sion play the key roles in mediating the differences.[29] Fur-
thermore, oscillatory behavior of QS plays extremely impor-
tant roles in drug deliver system for cancer therapy. Recent
theoretical study proves that protein synthesis time delay can
generate oscillation behavior in the QS system, which provides
possible clues for efficient cancer treatment.[30]

In this paper, we present a comprehensive review of the
currently mathematical models for wild-type and synthetic QS
systems in bacteria that advance our understanding of the com-
plex systems. The wild-type models mainly include Gram-
negative, Gram-positive, and Gram-positive and -negative bac-
teria QS systems. We select the representative theoretical stud-
ies of the corresponding systems and classify them by different
modeling methods, which give an overview of current efforts
and the future challenges of modeling.

2. Mathematical modeling of the QS systems in
Gram-negative bacteria
The models of QS system are mostly described by the or-

dinary differential equations (ODEs). In 2004, using an rhlI
null mutant, Chen et al. evaluated the effect of auto-inducer
PAI2 on the production of rhamnolipid (RL) by Pseudomonas
aeruginosa.[31] They built a model to describe the RL synthe-
sis kinetics regulated by the rhl QS system. ODEs are em-
ployed to describes the processes of PAI2 binding to the RhlR,
RhlR:PAI2 complex triggering the transcription and expres-
sion of the rhlAB operon to encode rhamnosetransferase, and
the enzyme catalyzing the synthesis of RL. The model fits
well with the experiments and quantitatively predicts the re-
lation between PAI2 concentrations and the enzyme synthe-
sis. Higher PAI2 concentrations induce higher initial enzyme
synthesis rates, resulting in an increase of RL. The maximum
RL production rate of the culture was also quantitatively de-
termined in this study, providing an important basis for the
precise determination of the complex QS system.

Besides the positive feedback that is responsible for
switching the states of QS systems, Mcintosh et al. found
that a negative feedback is also required for state changing
of the system in Sinorhizobium meliloti.[32] The QS system
in Sinorhizobium meliloti is called Sin system, which mainly
includes the signal molecules of AHL, SinI, SinR, and ExpR.
Through an experimental data-based ODE modeling, they pre-
sented a minimal mathematical QS network model of the
nitrogen-fixing bacterium. The model can correctly predict the
experimental observations, particularly the relation between
cell density and AHL concentration. Low cell density induces

all produced AHL to leave the cells quickly. The negative
feedback is the binding of ExpR/AHL to sinR promoter to in-
hibit sinR expression, resulting in the inhibition of sinI expres-
sion and AHL production decrease. The positive feedback was
systematically discussed, which can increase AHL production
when the cell density exceeds a certain value. The negative
feedback switches off AHL production with higher cell den-
sity.

In 2016, Marenda et al. established a mathematical model
to study the regulation of cell density by bacterial QS in an
open boundary extension system.[33] The study demonstrates
how tube height can overtake the role of producer density in
triggering sensor activation, emphasizing the key role of sig-
nal diffusion and signal degradation in adjusting the effect of
spatial extension on QS activation.

Bifurcation analysis approach of the QS ODE models is
also widely employed to show how the steady states of the sys-
tems are modulated by the change of control parameters. An
early mathematical model of the QS system in Gram-negative
bacteria (V. fischeri) was developed by James et al.[34] Us-
ing bifurcation analysis, they determined how the system can
create two stable states of luminescent expression and non-
luminescent phenotypes. Changes in parameters of metabolic
processes and extracellular signal molecule concentration can
switch these two states. The study provides a quantitative anal-
ysis of the lux genes regulation network and further implies
that lux genes can induce luminesce under the shortage of ex-
tracellular signal molecule.

The QS mechanism at the single-cell level was studied
by Melke et al. in 2010.[35] They introduced a cell-based
model of growing bacterial microcolonies, which mainly con-
tains the components of LuxR, AHL, and LuxR-AHL. In this
network, the signaling molecule AHL synthesized by LuxI
protein can penetrate the cell membrane and activate LuxR
protein through binding to LuxR. The activated LuxR protein
can form a dimer to induce the synthesis of AHL and LuxR.
Two positive feedback mechanisms are involved in this model
where dimerized LuxR-AHL can activate both LuxR produc-
tion and AHL synthesized by LuxI. The model predicts that
the cell density-dependent behavior highly depends on local
cell-clustering and the geometry of the evolution space. Bi-
furcation analysis finds multistability regions which are deter-
mined by the model parameters. Furthermore, the mechanisms
how colony size, local clustering, and confinement affect the
dynamic behaviors of the QS system are further explored in
the study.

Besides the ODE models, partial differential equations
(PDEs) models, which can be used to follow changes in more
than one independent variable, have been used to study the QS
systems. In 2001, Dockery et al. established a mathemati-
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cal model of the QS system in the Gram-negative bacterium of
Pseudomonas aeruginosa to investigate the mechanism of how
the auto-inducer can act as a signal and when this mechanism
works.[36] Pseudomonas aeruginosa contains two regulatory
QS systems of both the las system and rhl system. ODEs are
employed to describe the kinetics of the system. PDEs are
further involved in the model to study the inhomogeneous dis-
tributions of auto-induced factors in the extracellular spaces.
With the model, they proposed that QS works through a bio-
chemical switch between two stable steady solutions, one with
low level and one with high level of auto-inducer. The steady
states are highly controlled by the size and local density of
cells.

In addition to the modeling of QS systems with ODE and
PDE approaches, the QS system modeling based on the delay
differential equations (DDEs) was also proposed. Barbarossa
et al.[37] focused on the QS system in Gram-negative bacteria
of the species Pseudomonas putida. The network includes a
negative feedback via the degradation enzyme of auto-inducer,
leading to the time delay of the system. Diverse features of the
system, such as existence, uniqueness, and non-negativity are
investigated. The steady state and its stability are qualitatively
studied, showing that the system gives a stable switch to the
delay for certain parameter values. Hopf bifurcation occurs
without delay in the QS system. This study suggests that the
delay system is sufficient to explain the biological observa-
tions.

3. Mathematical modeling of QS systems in
Gram-positive bacteria

The Gram-positive bacteria QS systems typically use pep-
tides as signaling molecules that are secreted by the environ-
ment and recognized by the two-component systems. In 2004,
Gustafsson et al. developed a mathematical model to explore
the Gram-positive bacteria QS system (agr system) in Staphy-
lococcus aureus.[38] The model presents that the agr system
can be activated by the auto-inducing peptide (AIP) at certain
levels. The study indicates that altering agr activity hardly af-
fects RNAIII levels but significantly changes the cells sensi-
tivity to AIP. Further analysis shows that the inhibition of AIP
delays the activation of the agr system.

In 2007, Karlsson et al. established a mathematical
model of QS system referred as the ComABCDE pathway in
Streptococcus pneumoniae to study the down-regulation of the
competence-evoking network.[39] In this article, Karlsson et
al. not only studied the QS that induces competence, but also
pointed out the possible signaling molecular mechanism dur-
ing the sudden shut-down of the system. Through bifurcation
analysis, they found that shut-down of competence possibly

occurs at the transcriptional level on the comCDE operon. Al-
though QS in pneumococcus has been studied for many years,
the negative feedback regulation mechanism has not been de-
termined. A putative ComX-dependent repressor which in-
hibits the expression of comCDE and comX is predicted in the
model, providing a negative control mechanism in the system.
The model proves that the competence is demonstrated to ap-
pear in waves, which is supported by experimental studies in
pneumococcal batch cultures.

Besides the ODE approach with bifurcation analysis, the
stochastic description has also be introduced for the study of
QS systems due to the intrinsically stochastic characteristics
in the systems. A stochastic and a deterministic model that de-
scribe the process of endosome escape of Staphylococcus au-
reus were proposed by Koerber et al. in 2005.[28] This study
presents the first stochastic model for bacterial QS system.
The models were analyzed to study the mechanism of the pro-
duction of virulence factors by Staphylococcus aureus, which
is a Gram-positive bacterium involved in many diseases. In
this network, accesory gene regulator (agr) locus provides the
regulation mechanisms. AgrB is required for the processing
of AgrD to generate AIP and also for the transport of AIP
across the membrane of bacteria. AgrC is the acceptor of AIP
and phosphorylates AgrA. Phosphorylated AgrA then inter-
acts with SarA to promote the promoters P2 and P3 to regulate
the expression of ageBDCA and RNAIII. The agr network was
simplified into an encapsulated “black box” model, which as-
sumes that all of the inherent genetic machinery is rapid. De-
tailed asymptotic analysis for the stochastic problem was com-
pared with the Monte–Carlo simulation. Based on the model,
they determined the biologically relevant asymptotic limit of
closed-form asymptotic and numerical solutions that the up-
and down-regulation rates of bacteria are rapid. The distribu-
tion of endosome escape time was also predicted.

4. Mathematical modeling of QS systems in
Gram-positive and -negative bacteria
AI-2 mediates the QS systems both in Gram-negative and

-positive bacteria, which is involved in interspecies communi-
cation among bacteria.[40] AI-2 is an important auto-inducer
in Vibrio harveyi to sense cell density. At low cell density,
through a phosphorylation mechanism, LuxU is phosphory-
lated and then phosphorylates LuxO, promoting the produc-
tion of qrr sRNAs. sRNAs repress the expression of LuxR.
At high cell density, AI-2 is produced with the participa-
tion of LuxS protein. Extracellular AI-2 binds to the trans-
membrane LuxP protein and processes signaling to the LuxQ
two-component hybrid sensor kinase protein, resulting in a
low production of sRNAs and a high concentration of LuxR
protein to induce luminescence activation.
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In 2009, Banik et al. established a simple model to
study the luminescence regulation in the QS system of Vibrio
harveyi.[41] Based on the experimental data of the lumines-
cence phenotype for the wild type and for the different mutant
strains, they determined the key dimensionless parameters that
control system’s response. Model predictions fit well with the
other independent experimental results. In addition, the model
predicts the change of luminescence phenotype and the effect
of perturbations on the network, providing essential guidance
for experimental analysis of the complex QS system.

Besides, Hunter et al.[29] comparatively analyzed the QS
systems in Vibrio harveyi and Vibrio cholerae to facilitate a
better understanding of the regulation mechanism and found
that Qrr in Vibrio cholerae is more abundant and more sensi-
tive to the changes in LuxO than that in Vibrio harveyi. Using
single-cell resolution, Long et al.[42] quantified the integra-
tion of QS system in Vibrio harveyi and found that informa-
tion from two distinct signals is combined strictly and addi-
tively, with precisely equal weight from each signal. Besides,
Teng et al.[43,44] determined that the receptor ratio of LuxN
and LuxPQ controls the integration and measured the copy
number of the master regulators at the single cell level.

5. Mathematical modeling of synthetic QS sys-
tems in bacteria
To conveniently and deeply investigate the mechanism of

bacterial QS systems, studies have also focused on construct-
ing synthetic gene circuits that exhibit desired QS properties in
synthetic biology. Several typical QS systems in bacteria have
been synthesized and implanted into E. coli in recent years.
Lee et al.[45] developed the first molecular mechanism-based
model in a recombinant E. coli system to explore the effect
of growth rate on the plasmid content and expression of gene
production. The study clarified the advantages of model-based
dynamical descriptions, which can be directly implicated for
fermentation process design for recombinant bacteria.

The auto-inducer AHL is one of the most important com-
ponents in bacterial and has been involved in various synthetic
QS systems. Different models are developed by considering
the fineness of AHL, ranging from only considering AHL in-
side bacteria to modeling the AHL inside and outside of the
cell and then discussing the AHL on the cell membrane. In
2001, a mathematical model was developed by Nilsson et al.
to study the concentration changes of AHL inside the cell and
in the biofilm over time with growth rate, diffusion of AHL,
and autoinduction rate.[46] Their study suggested that AHL in-
side individual cells increases rapidly at the early stage of pop-
ulation growth and then follows by a plateau. Then another
increase of AHL concentration is observed, approaching to a
second plateau. Dynamic analysis indicated that the low rate

of diffusion outside the cell and the biofilm, the slow growth
rate of bacteria, and the fast autoinduction can induce a high
concentration of AHL inside the cell at the early stage. How-
ever, if the growth rate of bacteria is fast, the autoinduction rate
is slow and the rate of diffusion is high, the high concentration
plateau in stationary phase occurs. This study quantitatively
explored the implications of the components for AHL regula-
tion under different situations, suggesting that AHL-mediated
phenotype can occur at relatively low cell density and low con-
centration of external AHL.

In 2004, You et al. applied the coupled gene expression
of cell growth dynamics to study the QS system in E. coli.[47]

A cell density control circuit that incorporates cell death was
designed. They built a simple model and proved that the two
fragments of luxI/luxR gene and target genes are closely cou-
pled, and the cell density and gene expression can be regulated
through varying the cell communication signal. They hypoth-
esized that the cell density will have an inherent growth rate
and the maximum carrying capacity of the environment with-
out gene fragment implanted, which were experimentally val-
idated. With the gene fragment implanted, the cell density is
regulated by the lethal protein level and its increase is propor-
tional to the level of AHL. The model predicted and verified
that with implanting synthetic gene fragments, the lethal pro-
tein production rate is restricted by the synthesis of AHL. The
cell density at stable steady state is proportional to the degra-
dation rate of AHL. Further analysis implied that pH change
does not affect the amount of lethal protein in cells.

The cooperative behaviors of the QS systems with
stochastic fluctuations inside and outside cells have been stud-
ied by Chen et al. in 2005.[48] They developed a general model
of a synthetic gene network by using the luxI and luxR QS sys-
tem in Vibrio fischeri. Hopf bifurcation theory was employed
to analyze the multicellular system dynamics. The diffusion
of signaling molecules is also considered in the model. The
multi-system composed of synthetic QS is proposed to demon-
strate the effects of noise, time delays, and the coupling on col-
lective dynamics, which explain well that noises are essential
for inducing the system cooperative behaviors.

For biological systems, if the components have very low
concentrations (or amount) and slow reaction rate, due to in-
herent stochastic events, random fluctuations may occur, re-
sulting in significant variation for system behaviors. In 2006,
Li et al.[49] constructed a mathematical model with stochas-
tic simulations to study the hierarchical organization of luxS-
derived AI-2 circuitry in E. coli. The study indicated that in the
presence of glucose, the mRNA transcription (Pfs) and pro-
tein levels of AI-2 syntheases (LuxS) cannot significantly in-
crease the level of AI-2. An increase in metabolic flux through
the synthesis pathway partially explains this difference in the
presence of glucose and other biological steps were predicted
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to be exist in the synthesis of AI-2, which were validated by
the corresponding experiments. This work confirmed that the
systems-based stochastic models can be linked to cell physiol-
ogy. Tian et al.[50] also used stochastic models to study the QS
system, suggesting that the construction of stochastic models
is a powerful approach for studying noise in gene regulatory
networks.

In 2013, Saeidi et al.[51] build a synthetic QS system
model to study the regulatory mechanism in Pseudomonas
aeruginosa. Their model described the bacterial QS mecha-
nism in detail at gene level and modeled an example device
that generates green fluorescent protein (GFP) as reporter in
the presence of AHL. The model can well-reproduce the ex-
periments quantitatively. Through parameter sensitivity analy-
sis, not only the most sensitive reaction parameters in the sys-
tem, but also the reaction parameters that have the greatest
influence on the transient time to reach the equilibrium were
discussed. The proposed model can be used to predict the pro-
duction of GFP and applied for further control circuit design.

To subtly control bacterial cell density, Wang et al. built
a synthetic cell–cell communication system that combined the
cell death BioBricks and QS mechanism in Vibrio fischeri.[52]

They found that the constructed ribosome binding site (RBS)
of RBS0.07, RBS0.3, RBS0.6, and RBS1.0 QS circuits can suc-
cessfully control the cell density through regulating the lethal
gene expression. A mathematical model was further devel-
oped to validate the system dynamics and to quantitatively de-
scribe the constructed components for regulating cell density.

6. Conclusion and perspectives
QS plays an important role in cell-to-cell communication

to sense their population density and to regulate correspond-
ing gene expression. Although numerous QS systems have
been discovered in experiments, little is known about their de-
tailed control mechanisms, and quantitative analysis and cir-
cuits design are still hard to achieve. Mathematical model-
ing and theoretical study of the QS systems have become a
powerful tool to enhance our understanding of the complex
QS dynamics.[53] In this review, we classified the mathemat-
ical models of QS systems in bacteria into four categories:
Gram-negative, Gram-positive, Gram-positive and -negative,
and synthetic bacterial models. To comprehensively study the
QS system dynamics, remarkable progresses have been made.
Models were developed from only considering a few key com-
ponents to constructing an integrative signaling network of QS
systems, including from ignoring signaling molecules inside
and outside the cells to considering the flow of molecules be-
tween cells, from developing deterministic models to building
noise-involved stochastic models, and from studying the point
model with ODE to discussing the effects of spatial diffusion

and boundary on the system with PDE. In summary, we have
elaborated a table (Table 1) to present a broad overview of the
representative models of the corresponding QS system.

Based on this review, we suggest that more systematic
modeling should be constructed in the future for QS system
investigation. For instance, more complete signal pathways
shoud be established, and the variety of genes, subtle influ-
ences, and processes involved in the QS should be considered
based on the new experimental observations. Besides, the key
components involved in the QS system may also participate in
other biological processes in cells which can also be discussed.
Although the QS system models are built at the gene level,
the processes of specific inducers that act on the promoter of
the gene, and the promoter that initiates the transcription and
expression of genes, which have been generally simplified to
only one or two equations in previous models, should be sim-
ulated in detail in order to distinguish the different functions
of promoters in QS systems.

As an essential factor in controlling cell density, the cell
death process that is seldom considered in previous model
should be investigated for modeling in the future. During the
late stage of cell growth, nutrients become lacking and toxic
metabolic by-products are accumulated massively. The mech-
anism of which by-products lead to cell death is not partic-
ularly clear. For a model to consider such mechanisms, the
kinetics of bacteria population could be accurately simulated
for QS systems.

Physical properties of the environment are pivotal for the
QS system. The factors, including noise, interaction between
signaling molecules, spatial diffusion, boundary effects, envi-
ronmental pH and temperature, etc, play important roles for
QS, which should be taken into account as well. Although
the effects of noise and pH on the QS system have been previ-
ously studied,[47,48] temperature and some other factors should
be further considered in the future models. When encounter-
ing the slow reaction rates of gene regulation networks with
very low concentrations (or amounts) of signals, random fluc-
tuations exist due to the inherent random events and thus a
stochastic model should be constructed.

Remarkable progress has been made by coupling biolo-
gists and physicists. The biological system behaviors defined
by physical laws and principles provide better understanding
and new insights of the complex systems, which are also the
main goal for biologists. For example, a “seesaw model” that
proposed by Tang et al. well describes the reprogramming
landscape that is shaped by the interactions among various
states.[54] Ouyang et al. found a general inverse relationship
between the phase diffusion constant and free-energy dissi-
pation in the biochemical oscillation systems.[55] Mathemat-
ical modeling not only helps to dissect the underlying control
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mechanism of the complex QS systems, but also makes quan-
titative analysis and prediction which can provide guide for
novel therapies and optimal treatment strategies. Thus, the ap-
plication of more physical concepts, such as interaction land-
scape and free-energy dissipation, for the investigation of QS
systems is a future research interest.

Overall, the current modeling studies of the QS systems
are insufficient for us to systematically clarify the detailed
dynamics. Considering more factors to make the modeling
system more biologically realistic will provide better under-
standing of the underlying mechanisms in QS systems, which
should be the further development for modeling study.

Table 1. Representative models of different QS systems in bacteria.

Year Author Method Major conclusion
QS systems in Gram-negative bacteria
2000 James et al. ODE & bifurcation analysis lux genes can induce luminesce under the shortage of extracellular signal

molecule
2001 Dockery et al. ODE & PDE The high and low states of auto-inducer are highly controlled by the size and

local density of cells
2004 Chen et al. ODE Providing an important basis for the precise determination of the rhl QS system
2010 Melke et al. ODE & bifurcation analysis The cell density-dependent behavior of LuxR-AHL QS system depends on local

cell-clustering and the geometry of the evolution space
2013 Mcintosh et al. ODE A negative feedback is required for state changing of the QS system in Sinorhi-

zobium meliloti
2016 Barbarossa et al. DDE & bifurcation analysis The delay QS system is sufficient to explain the biological observations
2016 Marenda et al. ODE Demonstrating how tube height overtakes the role of producer density in trigger-

ing sensor activation
QS systems in Gram-positive bacteria
2004 Gustafsson et al. ODE Altering agr activity hardly affects RNAIII levels but changes the cells sensitivity

to AIP
2005 Koerber et al. ODE & Monte-Carlo The first stochastic model for bacterial QS system
2007 Karlsson et al. ODE & bifurcation analysis A putative ComX-dependent repressor which inhibits the expression of comCDE
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